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Abstract  

Large quantities of carbon are stored in Yedoma permafrost. When temperatures rise, its high ice content is a catalyst for rapid 

degradation, which in turn may cause the release of large quantities of carbon. 40% to 70% of the radiative forcing from this 

release is expected to be in the form of CH4. In this observing system simulation experiment, we examined the capabilities of 

three atmospheric GHG monitoring platforms i.e. tall towers, and the TROPOMI and MERLIN satellites, to detect changes in 15 

CH4 release from increased Yedoma thaw. A set of environments are simulated with the GEOS-5 model: one representing a 

'natural' emission case as the reference, a second featuring enhanced CH4 release from Yedoma soils. From within these 

modelled environments, synthetic measurements are generated following best in situ practices and realistic error 

characterizations.  

For the satellites we find the lowest detection limits when aggregating measurements over a 112 day period, at Yedoma fluxes 20 

of 144% to 367% of current conditions. These factors are up to 1.2 times higher when taking transport modelling uncertainties 

into account. The tall tower network shows a wide range of detection lower limits, the lowest at only 107% of current fluxes, 

but has considerably higher lower detection limits when factoring in transport errors. Overall, the individual systems appear 

to lack the ability to detect and attribute small changes in Yedoma CH4 fluxes, and would either need to be used in combination 

or require a considerable time to detect changes under higher emission scenarios.  25 

1 Introduction 

The Northern high latitudes are seeing rapid changes in environmental conditions as a result of climate change (Serreze and 

Barry, 2011; IPCC, 2014; Meredith et al., 2019). These changes can have far-reaching consequences since permafrost soils 

contain large stocks of carbon, almost twice that of the atmosphere (Yu, 2012; Schuur et al., 2013; Hugelius et al., 2014; 

Strauss et al., 2017; Nichols and Peteet, 2019; Mishra et al., 2021). This carbon may be released to the atmosphere when 30 

permafrost thaws (Hugelius et al., 2020; Schuur et al., 2015, 2008; Serreze and Barry, 2011). The form in which this carbon is 

released (e.g. as carbon dioxide (CO2) or methane (CH4)) has a large influence on its climate impact (Schneider von Deimling 

et al., 2015; Walter Anthony et al., 2018), with 40-70% percent of the radiative forcing from permafrost thaw projected to 

originate from CH4 emissions. To understand how the Arctic will be affected and to properly capture any changes, continuous 

monitoring is essential; however, the monitoring capacity for pan-Arctic methane fluxes is still limited (O’Connor et al., 2010; 35 

Pallandt et al., 2021; Peltola et al., 2019; Pirk et al., 2016; Wille et al., 2008; Wittig et al., 2023; Xu et al., 2016), and likely 

not sufficient to detect abrupt changes in methane emissions at an adequate resolution and precision to inform adaptation 

measures designed by policymakers.  

There are many methods to directly monitor the methane exchange processes between the surface and the atmosphere. Bottom-

up methods, which include flux chambers and eddy covariance stations, measure locally with footprints ranging from <1 to 40 

several 1000s of m2 (Pirk et al., 2016; Schimel, 1995; Virkkala et al., 2018; Zona et al., 2016). These measurements can be 

upscaled to a larger domain to obtain regional-scale methane budgets (Davidson et al., 2017; Ingle et al., 2023; Nelson et al., 

2024; See et al., 2024). There are also transient methods such as drone and airborne campaigns (Fix et al., 2023; Miller and 

Dinardo, 2012; Scheller et al., 2022; Shaw et al., 2021; Sweeney et al., 2022), capable of capturing the spatial variability of 

methane flux signals in the atmosphere in episodic snapshots. Top-down methods make use of observations over large regions 45 

based on greenhouse gas sensors mounted on tall towers or satellites. To relate changes in measured atmospheric 

concentrations to fluxes between the biosphere and atmosphere, atmospheric inverse modelling is a commonly-used technique 

(Houweling et al., 2017; Michalak et al., 2004; Miller et al., 2014; Peters et al., 2010; Rödenbeck et al., 2003; Thompson et 

al., 2017). In atmospheric inverse modelling, emissions are estimated by minimising a cost function that compares observed 
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atmospheric mixing ratios with simulated values based on surface-atmosphere fluxes and transport models, including estimates 50 

of related uncertainty fields. Details on these methods can vary (Brasseur and Jacob, 2017), while the result is usually some 

form of local to regional estimate of fluxes constrained by observed concentrations. 

However, all top-down methods rely upon measurements of the atmospheric mixing ratios, either via in situ sampling or remote 

sensing. In this study we are using tall tower measurements to represent in situ measurements in general. Tall towers are 

typically equipped with in-situ greenhouse gas sensors that allow them to directly sample GHG mixing ratios. Many of these 55 

towers take samples from different heights, which corresponds to probing air with increasingly remote origins. Some towers 

are tall enough to breach the atmospheric boundary layer (at least at night), and take samples from the free troposphere, without 

a direct link to nearby surface fluxes (Bakwin et al., 1995; Winderlich et al., 2010). Continuous measurements often utilise 

cavity ring-down spectrometers to constantly sample the air from tower inlets, though they are more limited in the species they 

can detect (Andrews et al., 2014; Ball and Jones, 2003; Winderlich et al., 2010). As an alternative to direct in-situ GHG 60 

measurements, air samples can be collected in flasks at regular intervals, often (bi-)weekly, and stored for later analysis in a 

laboratory. This method has a lower temporal resolution compared to in-situ analyzers, but allows for a large range of 

compounds and isotopes to be detected (Andrews et al., 2014; Keeling et al., 1976; Levin et al., 2020). Tall towers can have 

footprints covering several 1000s of km2, therefore a single site can capture the influence of surface signals on a regional scale. 

A network of multiple towers can be used in inversions to link atmospheric concentrations to ground processes.  65 

While a tall tower takes measurements at a fixed point within the lower atmosphere, satellites sample the total atmospheric 

column, with measurements distributed across the globe. Satellite retrievals make use of molecular absorption lines at specific 

wavelengths to deduce the mixing ratio of a target gas, such as methane. While instruments measuring emitted radiation in the 

thermal infrared are mostly sensitive to methane in the upper troposphere and lower stratosphere, sensors measuring in the 

shortwave infrared have sensitivity to the full atmospheric column, making these sensors better able to capture the spatio-70 

temporal variability near the surface, which is important for flux inversions. In the past there have been several missions with 

such instruments: these include the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY 

(SCIAMACHY) on ESA's Envisat (Bovensmann et al., 1999; Buchwitz et al., 2006; Burrows et al., 1995; Dils et al., 2006; 

Frankenberg et al., 2006), the Japanese GOSAT mission (Butz et al., 2011; Yokota et al., 2009), and the TROPOspheric 

Monitoring Instrument (TROPOMI) on ESA's Sentinel-5 Precursor mission (Hu et al., 2018; Lorente et al., 2021; Veefkind et 75 

al., 2012). In this study we will take a closer look at TROPOMI’s detection capabilities as a state-of-the-art (Lindqvist et al., 

2024) passive sensor with the best spatial coverage. TROPOMI measures in the ultraviolet and visible (270–500 nm), near-

infrared (675–775 nm) and shortwave infrared (2305–2385 nm) spectral bands. It is therefore able to detect a host of 

compounds (e.g. nitrogen dioxide, ozone, formaldehyde, sulphur dioxide, methane and carbon monoxide). It has a spatial 

resolution as high as 7 km × 5.5 km at nadir. With a swath width of 2600 km and 14 sun-synchronous orbits a day, it produces 80 

a large number of soundings, especially around the poles where soundings overlap with those from previous orbits. However, 

it cannot sample without sunlight, making its use in the wintertime Arctic limited.  

One way to overcome this innate limitation of passive remote sensing is the use of an active sensor, which comes equipped 

with its own radiation source, making it independent of sunlight. The French Centre national d'études spatiales (CNES) and 

the German Aerospace Center (DLR) are developing such a sensor for the methane remote sensing lidar mission MERLIN, 85 

with an expected launch date of 2028. The instrument is an integrated-path differential absorption nadir-viewing Lidar, which 

is expected to have lower systematic errors than passive missions (Ehret et al., 2017; Pierangelo, C. et al., 2016; Stephan et al., 

2011). Moreover, since its sensor is active, it can sample at all latitudes year round, day and night with a 28-day revisit time. 

While the single-shot footprint of MERLIN is very small, with a diameter of only ~150 m, several along-track shots (separated 

by ~650 m) will be averaged together to attain the targeted measurement precision, with a nominal averaging length of 50 km. 90 

The large regional to global scales on which these systems operate might mean that local effects or processes with small flux 

magnitudes may remain undetected. While tall towers have large footprints, these are too sparse to cover all regional processes 

in the domain of interest. Processes relatively close to a tower may be hidden from it due to prevailing winds from different 

sectors (Pöhlker et al., 2019), and even a signal that falls within the footprint may not be detected as its influence to the final 

concentration decreases over distance (Vermeulen et al., 2011). Furthermore, inversion models typically report significant 95 

transport modelling errors, especially at high northern latitudes (Baker et al., 2006), further complicating the precise spatial 

attribution of an atmospheric signal. Satellites typically have global coverage, but they still require transport modelling, and 

calibration against ground-based reference datasets, such as those provided by the Total Carbon Column Observing Network 

(TCCON) (Wunch et al., 2011), to relate the column-integrated concentrations to ground processes (Bergamaschi et al., 2009; 

Parker et al., 2011; Toon et al., 2009). Moreover, atmospheric conditions, such as the presence of clouds or aerosols, which 100 

are typically detrimental to satellite soundings, need to be considered (Alexe et al., 2015; Bergamaschi et al., 2009; Houweling 

et al., 2014). As a consequence, each of the available observation platforms features uncertainties that may compromise its 

ability to monitor minor changes in surface-atmosphere exchange processes.  

To better understand the detection limits of the tall tower network and satellites, we conducted an observing system simulation 

experiment (OSSE) (Arnold and Dey, 1986; Errico et al., 2013; Zeng et al., 2020) where we tested a scenario of increased CH4 105 

https://doi.org/10.5194/egusphere-2025-604
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



3 

 

release from so-called Yedoma soils in the Arctic, and how it would be detected by the three observation platforms introduced 

above. OSSEs are typically used to test large networks like these where local experiments would not yield meaningful results 

or for systems that are not yet operational (such as MERLIN). In an OSSE, an environment is modelled that mimics a natural 

system, and synthetic measurements with realistic errors are generated. Such synthetic measurements can then be compared 

between a baseline run reflecting in situ conditions and a scenario run where specific conditions are created. Here we use the 110 

Goddard Earth Observing System (GEOS) model for these simulations, a framework which is well suited to simulate earth 

observing missions. The remainder of the manuscript is laid out as follows. Section 2 outlines the Methods, including the 

model setup for conducting the OSSEs and the simulated sampling strategy for our three observing systems – tall towers, 

TROPOMI and MERLIN. Section 3 provides the results, specifically focusing on the capability of these sensors to capture 

various attributes related to detection of methane emissions from Yedoma thaw. We continue with a discussion in Section 4, 115 

including caveats associated with our study and summarize the results and findings in Section 5.  

2 Methods 

2.1 GEOS  

The Goddard Earth Observing System (GEOS) Earth System Model (Molod et al., 2015; Rienecker et al., 2011) is a versatile 

coupled ocean-land-atmosphere modelling framework consisting of several components that allow it to address a wide range 120 

of questions related to Earth Science investigations. With land, ocean and atmospheric components and the ability to assimilate 

data for all three of these, it sees a wide range of uses. Particularly relevant for this study is its ability to model the carbon 

cycle (Ott et al., 2015; Sweeney et al., 2022; Weir et al., 2021), and its use for generating model simulations for OSSEs for 

satellite signal detection studies (Errico et al., 2013; McCarty et al., 2021). 

In this model setup, we simulated CH4 fields at 0.5° horizontal resolution and with 72 vertical layers (up to ∼ 0.1 hPa) at a 125 

three-hourly temporal resolution. CH4 flux input fields consist of five datasets: (1) agricultural emissions, (2) anthropogenic 

biofuel emissions, and (3) industrial and fossil fuel emissions, all taken from the Emissions Database for Global Atmospheric 

Research (EDGAR v4.3.2) (Janssens-Maenhout et al., 2019); (4) biomass burning emissions from the Quick Fire Emissions 

Dataset (QFED) (Koster et al., 2015); and finally, (5) wetland emissions from the process-based ecosystem Lund–Potsdam–

Jena model, WSL version (LPJ-wsl) (Poulter et al., 2011; Zhang et al., 2016). The setup is in line with Sweeney et al. (2022). 130 

As a scenario to test the detection limits we focus on expected increased CH4 release from thawing Yedoma (Schneider von 

Deimling et al., 2015; Strauss et al., 2017). Yedoma deposits are ice- and carbon-rich permafrost soils which are widespread 

in Siberia and Alaska (covering more than 107 km2). These soils are highly vulnerable to disturbance and degradation and are 

also prone to abrupt thaw processes such as e.g. thermokarst. Strauss et al. (2017) predict that 5-40 TgC from deep sources 

will be released in the form of CH4 per year over the coming century. We generate a nature run across an entire year (in this 135 

study, we picked the year 2010 for our baseline year), and a high-emission scenario run for the same time period. In this high-

emission scenario, wetland CH4 fluxes in grids flagged as containing Yedoma (Fig. 1) are amplified above the baseline from 

March until the end of the year; we call this the flux enhancement (Fe) factor. In this study, the maximum flux enhancement 

factor applied was 111 (Fig. 2), which was derived by comparing the magnitude of methane emissions from the labile carbon 

pool at the end of the century (Schneider von Deimling et al., 2015; Strauss et al., 2017) relative to the magnitude of methane 140 

fluxes for the year 2010 based on fluxes prescribed in the LPJ-wsl model. However, the main focus was placed on sensitivity 

experiments whereby the flux enhancement factor was gradually decreased to a minimum value of 1.06 (see Section 2.5). The 

spatial extent of the Yedoma fields has been adapted from Strauss et al. (2016) (Fig. 1) to match the GEOS 0.5° resolution.  

 

 145 
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Figure 1: Spatial extent of areas within the Arctic study domain dominated by Yedoma soils (cyan shading), including site locations 

of the tall tower network (coloured circles). Yedoma areas were adapted from Strauss et al. (2016) to match the GEOS grid resolution 

of 0.5°. 63 tall towers are shown, colour-coded by distance to the closest Yedoma area in km. Land-sea boundary vectors were taken 150 

from natural earth.  

 

 
Figure 2: Tall-tower network wide average methane concentrations for the year 2010 showing the baseline concentrations from the 

nature run (orange) and concentrations resulting from an 111-times flux enhancement (Fe) from natural sources in Yedoma areas 155 

(purple). For signal detection the Fe was decreased by a factor of 1.1 in 80 steps down to a lowest value of 1.06. 
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2.2 Tall-tower network 

For this model setup, we identified 63 tall towers in the boreal and Arctic domain located between 42.6 to 82.5 degrees North 

(Fig. 1), for which we designed a realistic synthetic sampling protocol. There is a large variation in elevation above sea level 

within this network, with the lowest point at Kjolnes (KJN) in Northern Norway 5 metres above sea level and Summit (SUM) 160 

at the apex of Greenland's ice sheet at 3215 metres. Concerning the instrument height above ground level, Russia features both 

the lowest and highest mounting positions with Teriberka (TER) at 2 meters above ground level and ZOTTO (ZOT) with a 

height of 301 metres. ZOTTO is the only tower that samples in the second atmospheric layer of the GEOS model. Of the 63 

towers, 17 are listed to have flask samples with a predominant sampling scheme of one flask per week. Continuous sampling 

with in-situ gas analyzers was confirmed at 35 of the 63 sites. The exact method of sampling is unknown for the remaining 11 165 

sites. Even in cases where data were collected continuously throughout the day, for this study we restricted the database to 

samples taken in the afternoon when the boundary layer is well mixed; however, during the Arctic winter, when very stable 

stratification dominates, this may still not always be the case. 

From the GEOS nature and enhanced flux run, each grid and level that contained a tall tower was sampled 3 times a day from 

the top inlet height during the 9:00 to 19:00 local time window, with 3 hours between each sample for a total of 1095 samples 170 

per site per year. This is in line with typical practice to sample in the afternoon when a well-mixed boundary layer has been 

formed. The timestep at which GEOS model output was written out was 3-hourly, even though the model internal timestep is 

much higher.  

Two error schemes were applied to the synthetic data: 

● Tall Tower ideal scenario (TTi) only takes into account the 2 ppb measuring error as set by the WMO. This gaussian 175 

random error was scaled with a 95th percentile (P95) at 2 ppb (μ 0 ppb, 𝜎 1.02 ppb). This is a theoretical detection 

limit of an atmospheric signal, including the ability to detect a change, but excluding an attribution of the source of 

the signal .  

● In the Tall Tower full error scheme (TTf), the random error term contains transport modelling errors from 

Bergamaschi et al. (2022) for an average of 30 ppb (μ 0 ppb, 𝜎 44.5 ppb) error. This reflects the network's ability to 180 

detect a change and attribute it to the region of origin.  

2.3 TROPOMI 

For cloud screening of satellite soundings we used the International Satellite Cloud Climatology Project (ISCCP-H series) 

dataset (Rossow et al., 2022; Young et al., 2018).  

Total-column soundings were generated to match optimal TROPOMI sampling, with one full 227-orbit repeat cycle (~16 days) 185 

repeated over the year. To estimate appropriate thresholds for simulating the cloud screening, we looked at the statistics for 

“good” soundings from two TROPOMI products,: the RemoTeC (v0017) retrieval from the Netherlands Institute for Space 

Research (hereafter referred to as SRON) (Lorente et al., 2021) and the Weighting Function Modified Differential Optical 

Absorption Spectroscopy (v1.5) from the University of Bremen (referred to as WFMD) (Schneising et al., 2019). Both of these 

products only contain successful retrievals. While these products cover the year 2019 we used these to establish general cutoffs 190 

and relations between variables and errors. After an initial analysis we solely used the WFMD product since the reported 

uncertainties in the SRON product appear to be too low, and do not match the scatter when compared with TCCON colocations, 

unlike the WFMD reported uncertainties. We diagnosed the Solar Zenith Angle (SZA) and established a cutoff at <75°. An 

assessment of the relation between measurement uncertainty and different factors indicated that albedo dominates. We binned 

the data onto our 0.5° x 0.5° model grid for comparison with samples from the model, but counted all soundings (not just one 195 

per bin per orbit). A host of filter settings were compared to Schneising et al. (2019) to produce the best fit between the spatial 

and temporal distribution of their good-quality measurements and our synthetic sampling, resulting in the following filter 

settings: an ISCCP cloud fraction (cf) < 0.1, solar zenith angle (SZA) < 75°. 

Random errors in ppb, the precision, were modelled by fitting a curve to the reported uncertainties from the WFMD soundings, 

showing the strongest relation to SZA and retrieved albedo at 2.3 𝜇m (function 1).  200 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  8.78 +
0.314

𝑎𝑙𝑏𝑒𝑑𝑜⋅𝑐𝑜𝑠(𝑆𝑍𝐴)+0.0068
 (1) 

 

To apply this relationship to the simulated data, albedo from MODIS band 7 was used (albedo7), which is measured at 2.1 

𝜇m. For most applications over land, this small difference in spectral albedo should not be significant. However, the MODIS 205 

albedo sampled by GEOS is a snow-cleared value available only over land, and does not reflect the snow and ice coverage, 

where the albedo is set to 0.05. Considering the fraction of the pixel covered with (sea)ice and snow FrI, this results in the 

following albedo for pixels over land: 
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𝑎𝑙𝑏𝑒𝑑𝑜 = (1 − 𝐹𝑟𝐼) ⋅ 𝑎𝑙𝑏𝑒𝑑𝑜7 + 𝐹𝑟𝐼 ⋅ 0.05 (2) 210 

 

Over sea ice (defined as FrI > 0.8 and a land fraction FrL < 0.1), albedo is set to 0.05. Over open water (FrI < 0.8 and FrL < 

0.1), only retrievals near the sun glint point are possible, which is negligible at these latitudes (Schneising et al., 2023). To 

account for the correlation between nearby measurements, the ~3 million soundings were binned by taking the mean of all 

soundings within 100 km and 1 hour of each other, yielding ~530 thousand samples that were then treated as independent.  215 

Seven subsets of TROPOMI data were created to investigate the impact of ground conditions on measurement precision (Table 

1). The ‘Full’ subset contains all soundings. ‘Sea’, ‘Ice’, and ‘Land’ contain only soundings from grids with 100% coverage 

of their corresponding type. The ‘>0.5’ cases contain soundings with at least 50% of the grid covered by their corresponding 

type, and less than 95% ice or snow (in line with the 0.95 ice cutoff employed in Kiemle et al. (2014)).  

 220 

Table 1 Satellite retrieval subsets and basic descriptives. FrL indicates the land fraction and FrI the snow and ice fraction. Soundings 

are the total number of soundings north of 50 degrees latitude. Mean errors indicate the mean random error for the entire domain 

over one year. 

 

Subset Condition TROPOMI MERLIN 

  Soundings Mean error (ppb) Soundings Mean error (ppb) 

Full All data 529512 

 

18.7 

 

588037 108 

Sea FrL= 0 & FrI = 0 0 - 

 

60475 95.4 

Ice FrI = 1  

141461 

20.2 232279 155 

Land FrL = 1 & FrI =0 9080 13.1 12352 35.9 

Sea > 0.5 FrL <0.5 & FrI <0.95 82918 

 

21.7 

 

175645 74.9 

Ice > 0.5 FrI >0.5 326180 

 

20.6 373108 134 

Land > 0.5 FrL >0.5 & FrI <0.95 198425 

 

15.1 115401 44.1 

Full transport Low All data - - 588037 116 

Full transport High All data - - 588037 131 

 225 

 

2.4 MERLIN 

Total column soundings were performed to match the planned MERLIN orbits. We filtered out all fully clouded soundings, 

yielding 589 thousand samples. The random error characterisation is based on the work by Bousquet et al. (2018), and each 

sample consists of all the along track samples with an averaging length of 50 km, with the following precision: 230 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

√𝐾𝑜𝑛
2+𝐾𝑜𝑓𝑓

2

2

√142⋅(1−𝑐𝑓𝑟𝑎𝑐)⋅1780
 (3) 

 

Where 

https://doi.org/10.5194/egusphere-2025-604
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

𝐾𝑜𝑛  =
√𝑎+𝑏⋅𝑐⋅𝐸⋅𝐷

𝑐⋅𝐷
 (4) 235 

𝐾𝑜𝑓𝑓  =
√𝑎+𝑏⋅𝑐⋅𝐸

𝑐⋅𝐸
 (5) 

 

With 

𝐷 = 𝑒
−2⋅𝐷𝐴𝑂𝐷𝑟𝑒𝑓

𝑃𝑠𝑢𝑟𝑓

𝑃𝑟𝑒𝑓  (6) 

E = 𝑒−2⋅𝐴𝑂𝐷𝑆𝑊 ⋅
𝜌

𝜌𝑟𝑒𝑓
 (7) 240 

 

Here a, b and c are constants which were set to 20, 0.2 and 70 respectively to match Fig. 2 of Bousquet et al. (2018); cfrac 

denotes the cloud fraction, which was taken from the ISCCP data product sampled along the simulated orbit. DAODref is the 

Differential Absorption Optical Depth reference value of 0.534 at a CH4 concentration of 1780 ppb; ⍴ref is the reflectance 

reference value of 0.1, with ⍴ being the reflectance converted from albedo as in Kiemle et al. (2014); Pref is the standard 245 

pressure at sea level at 1013 hPa and Psurf the surface pressure in hPa; finally AODsw is the aerosol optical depth at 1650 nm 

converted from the AOD at 550 nm (sampled online from the GEOS-5 data assimilation) with the Junge power law (Zhu et 

al., 2018). The main factors determining the precision are the surface reflectance, cloud fraction, aerosol optical depth and 

pressure.  

In addition to the seven subsets we introduced for the TROPOMI sampling, we considered two more scenarios which included 250 

transport modelling errors taken from Bousquet et al. (2018). Full transport low reflects the low end of the random error 

increase as a result of including a transport modelling error of 8 ppb, and full transport high represents the high end of the 

transport-modelling-related random error at 23 ppb (Table 1).  

2.5 Signal detection 

We compare the nature run with the Yedoma thaw scenario for each of the seven sampling and error characterizations listed 255 

above using an array of t-tests. The basis for the signal detection experiment is a variable signal strength, where we reduce the 

111 (Fe) over 80 steps to a minimum Fe of 1.06. Since the power of a t-test increases with sample size, we test six temporal 

bin sizes of increasing length (7, 14, 28, 56, 112, 224 days) with step sizes of one day as these move across the year, similar 

to a moving average. However, because of the large number of tests, we can expect a large amount of false positives. Therefore 

we apply a false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) on the p-values and report the resulting q-260 

values. In this context, we consider each q-value of 0.05 or lower to be a significant detection of differences. In the tall tower 

network, we test each tower individually and report the number of towers that show a significant difference. We then establish 

the lower detection limit cutoff point for each time step. The first step is finding the range of Fe values where both significant 

and non-significant values are present. The top of this range is the lowest significant Fe where all preceding steps were also 

significant. The bottom of this range is the highest Fe for which all lower Fe values were not significant. The cutoff point is 265 

then the centre of this range, weighted by the number of (non)significant values in this range. For example, if this range had 

three significant and four non-significant results, the cutoff point would be set at three down from the top. 

3 Results 

3.1 Optimal detection limits 

Evaluating the effect of the bin sizes in both the tall tower network (Fig. 3) and satellite systems (Fig. 4) shows that a longer 270 

evaluation period increases the discriminatory power of these systems, though only to a certain extent. In the tall tower network 

and the MERIN subsets ice >0.5 and sea >0.5, only minimal improvements and in some cases decreases in performance are 

found after 112 days. In the case of TROPOMI and the remaining MERLIN subsets, no substantial improvements are found 

in bin sizes longer than 28-56 days. Increases in bin sizes come at a cost, as periods considerably longer than the 112 days will 

increasingly sample from outside the peak fluxes in this experiment (Fig. 2). And in the case of the satellites, larger bin sizes 275 

can increase the number of samples in unfavorable conditions. The Arctic night greatly reduces the data yield from TROPOMI 

(Fig. 5), and snow and ice negatively affects the precision of both instruments, especially MERLIN (Table 1). For the remaining 

evaluation we focus on the 112 day bin since this equals the optimum or near-optimum in all cases while still capturing seasonal 

fluctuations.  

We find that the tall tower network is capable of detecting the lowest flux differences: this happens at the peak of fluxes in 280 

September, with a Fe value of 1.07, but only for a single site (Baranov), when excluding transport modelling errors. Including 
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such errors increases the lower detection bound to a flux enhancement Fe of 4.56. We also observe that there is a large 

difference in detection limits between the towers: For all 63 towers to detect a change, Fe needs to be at least 1.58 (TTi), or up 

to 32.9 (TTf) when considering transport modelling errors. For at least five towers to detect a significant difference between 

natural and enhanced emissions, detection limits are more than doubled compared to that for a single site (compare Figures 3 285 

and 6). 

TROPOMI’s lowest detection limit is slightly higher at an Fe of 1.44 in the Full subset. Even at a short 7-day bin size, 

TROPOMI can detect significant differences at a Fe of 2.84 under the Full and Land >0.5 subsets.  

In the Full subset, MERLIN's lowest detection limit is at an Fe value of 3.67; however, the Land >0.5 subset performs better 

than the Full subset at an Fe of 3.21, owing to significantly lower random errors over land (Table 1). The impact of transport 290 

errors appears to be relatively small, with the Low scenario in some cases having similar detection limits as the Full scenario 

without transport modelling errors and the High scenario only adding an average 0.76 Fe to the detection limit.  

  
 

Figure 3: Minimum detection limit ranges for the tall tower network between detection at a single site (lower bound) and at all sites 295 

of the network (upper bound) per temporal bin size. Non linear y-axis of all 80 Fe steps. Without transport modelling errors (yellow), 

detection limits are low but there is a large range between the best and worst locations. A similar pattern is visible when transport 

modelling errors are considered (purple), but here the network benefits more from longer temporal bins.  

 

 300 
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Figure 4: Minimal detection limits for MERLIN and TROPOMI by temporal bin size. The Y-

axis shows the Fe values of the lowest detection limits (note the shorter Y-axis and linear scale). 

On the X-axis the size of temporal bins is given. Full sets are in magenta, Sea in purple, Ice in 

cyan and Land in yellow. Distinctions between MERLIN and TROPOMI and the subset 

thresholds are shown in line style. We see optimal detection limits at a temporal bin size of 112 

days.  

 

https://doi.org/10.5194/egusphere-2025-604
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

 305 
Figure 5: Number of cloud-screened satellite soundings, by month, 5° latitude bin and platform, left: TROPOMI, right: MERLIN. 

TROPOMI is not capable of reliable soundings over clear water at these latitudes. Because of the precession of its orbit MERLIN 

will not sample north of 85° N.  

3.2. Sea Ice and Land subsets 

For both satellite-based platforms we investigated the effect of different surface conditions on the retrievals by splitting the 310 

dataset by Sea, Ice or Land grids, and grids that predominantly contained one of these classes.  

Since TROPOMI has no reliable way of sampling over open sea at these latitudes, the Sea >0.5 subsets therefore reflect 

samples taken from predominantly sea grids containing land or ice. The Sea >0.5 and Ice >0.5 and Land >0.5 subsets 

performed 1.75 times worse than the Full subset at a Fe of ~2.60 (Fig. 4). However, the Ice and Land subsets performed 

significantly worse than the Full subset, at a Fe of 5.74, and 4.91 respectively. In the case of Ice this is likely a result of a 315 

strong seasonality in the sampling, since it has a similar number of total samples and mean error to the Land >0.5 subset (Table 

1). The difference is that the flux enhancement is low in the winter months when ice and snow dominate (Fig. 1). 

Owing to the large sensitivity to ground conditions, we see large differences between the subsets in MERLIN data. The lower 

detection limit for Sea, Ice, and Land is ~7 Fe higher than for the Full subset. The detection limits of these scenarios are fairly 

similar since the number of samples and mean errors are proportional, with Land having the smallest sample size and the 320 

smallest error and Ice the highest number of samples and the largest error (Table 1). In the >0.5 subsets we see that sample 

size is no longer the limiting factor, with Land >0.5 having the lowest error and performing best, followed by Sea >0.5 with 

the second-lowest errors followed by Ice >0.5 with the highest errors. Of note is that the Land >0.5 subset performs better 

than the Full case, indicating that, depending on the application, it can be beneficial to only consider soundings over mostly 

snow- and ice-free land.  325 

3.3 Seasonality 

In the case of the tall towers network we assumed undisturbed operations during wintertime, though fluxes are lower during 

this time. Therefore, despite similar sampling sizes and errors, we observe on average a lower detection level twice as high as 

in summer (Fig. 6) which is likely related to lower wintertime fluxes (Fig. 1) .  

TROPOMI, being a passive sensor, has limited to no wintertime observational capabilities in the high latitudes (Fig. 5), and 330 

therefore detection limits display a strong decline during the winter (Fig. 7). As a result, detection limits increase on average 

by a factor of 5 during winter. We observe the lower detection limits of the Sea and Land subsets increasing faster from summer 

to winter than those of Ice resulting from the increasing sea ice and snow extent (not shown), and thus a relatively larger 

number of samples under these conditions.  

https://doi.org/10.5194/egusphere-2025-604
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

MERLIN’s active sensor can measure in the absence of sunlight; however, during the winter the majority of the domain is 335 

covered by snow and ice, which has a low reflectance in the shortwave infrared and substantially increases the random error. 

Therefore we still observe a 2.4-fold seasonal increase in the lower detection limit (Fig. 8). While this relative increase is 

smaller than in TROPOMI’s case, the absolute lower detection limits are higher. The Land >0.5 case has been shown to have 

the lowest detection limits, but in wintertime the Full, Ice >0.5 and Sea >0.5 cases outperform it. This indicates that during 

spring, summer and early autumn the Land >0.5 subset functions best while for the rest of the year the Full subset yields better 340 

results. In general, masking high error regions can improve overall performance on the metric considered here.  

  

 

Figure 6: Contour plot of the Yedoma CH4 flux detection limit of the tall tower network. Shown for the 28-day bin sizes which 

retains most of the temporal variation. The top panel shows results for the pure detection limits (TTi) scenario, while in the bottom 

panel detection limits are given including transport modelling errors (TTf). On the non linear y-axis of all 80 Fe steps, the flux 

enhancement (Fe) factor is shown, on the X-axis the date (centre of 28-day bins). Colours and isolines indicate the number of tall 345 

towers that detect a significant difference (q ≤ 0.05) between the natural and enhancement scenarios. Note that the peak of the 

emissions was during September. 
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Figure 7: Contour plot of the Yedoma CH4 flux detection limit of TROPOMI, showing the Full case. Shown for the 28-day bin sizes 350 

which retain most of the temporal variation. On the non linear y-axis of all 80 Fe steps the flux enhancement (Fe) factor is given, on 

the X-axis the date (centre of 28-day bins). Colours and isolines indicate the q-value of the comparison between the baseline and 

enhancement scenario. Note that the peak of the emissions was during September. 
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 355 
Figure 8: Contour plot of the Yedoma CH4 flux detection limit of MERLIN. Shown for the 28-day bin sizes which retain most of the 

temporal variation. The top panel shows pure detection limits under the union of the Land >0.5 and Full subsets, the bottom panel 

the detection limits of Full including high transport modelling errors. On the non linear y-axis of all 80 Fe steps the flux enhancement 

(Fe) factor, on the X-axis the date (centre of 28-day bins). Colours and isolines indicate the q-value of the comparison between the 

baseline and enhancement scenario. Note that the peak of the emissions were during September. 360 

4 Discussion 

4.1 Methodological aspects 

In the scenario presented here, CH4 fluxes from Yedoma were uniformly increased by a single, homogeneous Fe factor across 

the domain and time. However, this is unrealistic in the sense that rapid localised thawing of Yedoma may result in localised 

increased CH4 release that may be heterogeneous in space and time. While higher flux magnitudes would have a lower 365 

detection limit, more localised fluxes or temporally asynchronous fluxes would require higher detection limits. It is therefore 

not unreasonable to assume that these opposing factors might balance out over time and space. How this would affect detection 

limits could be quantified only in additional OSSE runs, but the definition of such detailed scenarios were beyond the scope 

of this investigation.  

There are limitations to the degree by which random errors, either based on previous studies or expert knowledge, are 370 

applicable and transferable. The transport modelling error characterization of tall towers is based on a study focused on the 

European tall tower network (Bergamaschi et al., 2022), which consist of a far denser network of tall towers than is present in 

the Arctic, which in turn may indicate an underestimation of the error in our study. However, methane fluxes (especially from 

anthropogenic sources) are higher in Europe than in most of the Arctic, and spatially heterogeneous, which would indicate an 

overestimation of the error in our study. To which degree these compensate each other is uncertain.  375 

The TROPOMI random errors and cloud-screening were based on a best-fit to actual retrievals from Schneising et al. (2019). 

Despite this, the number of "good" retrievals for a given year is double that produced by our sampling due to the limited spatial 

and temporal resolution of our model. However, after spatio-temporal binning to account for correlation between 

measurements, these differences are largely mitigated.  

In this experiment we applied the random errors to the synthetic signals of both the nature run and the perturbed run. This 380 

setup is based on the premise that a baseline is built on past monitoring, which therefore implies similar uncertainty in our 

prior knowledge of the system. With a large enough dataset, such as e.g. a baseline set over multiple years, random errors 

should, by definition, average out to zero. Thus, an argument could be made that the baseline runs should not have these error 

terms. However, when we also consider interannual variability in both transport and fluxes, we are of the opinion that including 

the error terms in the baseline is  more realistic.  385 

To set detection limits, we performed an array of t-tests corrected by a test for false detection rates (FDR). The combination 

of t-test with a p threshold at 0.05 and an FDR correction with a q threshold at 0.05 is a fairly strict measure, especially since 

the FDR correction decreases the statistical power slightly. More lenient cutoffs would result in slightly better detection limits, 
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although at an increased uncertainty. There are methods (Lai, 2017) to better fine tune the FDR cutoff which can be considered 

in future work.  390 

We also note that this analysis does not fully take into account some of the benefits of the satellites: TROPOMI and MERLIN 

operate at a higher spatial resolution than our model runs, and while that may not directly aid in monitoring large scale 

processes, it is certainly a benefit that should not be overlooked, especially if the methane emissions were to happen at very 

localized scales that are smaller than our model resolution (0.5° x 0.5°).  

Furthermore, MERLIN’s expected low systematic errors are of great importance when quantifying fluxes (Bousquet et al., 395 

2018). Unlike random errors, systematic errors do not decrease when averaging over time and space, and result in biased flux 

estimates. Due to the approach used in this study, this potential strength was not taken into account in our analysis.  

4.2 Data interpretation 

To put results of this experiment in perspective we look at three future example scenarios for CH4 release in the Arctic based 

on different Representative Concentration Pathways (RCPs) (Moss et al., 2010; Schuur et al., 2022): Low, based on RCP2.6-400 

4.5, which assumes slow warming and slow ecosystem response; Medium, based on RCP4.5-8.5, envisioning moderate to high 

global and Arctic warming with moderate ecosystem and landscape response; and High, RCP8.5, high global and Arctic 

warming with fast ecosystem and landscape response. For each of these scenarios, CH4 fluxes are expected to increase 

significantly over time, and are considered for current conditions, halfway through the century (2049), and end of the century 

(2099). Considering current boreal and arctic fluxes to be on average 40 Tg C-CH4 year−1 (Kuhn et al., 2021; Zhang et al., 405 

2016), without considering transport modelling errors on average the TROPOMI and tall tower networks are able to detect a 

doubling of fluxes. Therefore they will only be able to detect these increased fluxes in the Medium scenario for the 2099 

emissions and the High scenario from 2049 onwards. MERLIN would detect these changes in the High scenario from 2099. If 

we aim to allocate these flux increases to their respective sources by inverse modeling, then MERLIN’s detection limits will 

allow this in the High 2099 scenario. Considering similar detection limits and largely similar challenges in transport modelling, 410 

TROPOMI would follow a similar pattern. The tall tower network would likely not be able to directly allocate these fluxes as 

a result of their high transport errors. Therefore, given the expected flux increases, these systems will likely not be able to 

detect, let alone attribute, current changes in methane emissions from Yedoma areas. And even in the High and Medium 

scenarios, for which such changes could be detected, this would still be a matter of decades. This result is in line with Wittig 

et al. (2023), who analysed the tall tower network’s ability to detect a potential ‘methane bomb’ emission scenario from 415 

degrading Arctic permafrost, and also found long delays in detection. With different methods these studies arrive at similar 

conclusions, emphasizing the robustness of these results.  

It is possible that multi-year monitoring of peak fluxes (e.g. summer and autumn) could expose significant differences sooner 

at the cost of seasonal and spatial distinction. However this would require a reliable baseline trend and would not be informative 

about the source of the change. Given that a flux enhancement of 1.58 leads to a detectable enhancement for the entire network 420 

of tall towers, it is clear that these signals are quickly mixed throughout the entire domain, reaching all towers. However, when 

including transport modelling errors, this increases to 32.9. This indicates that while the signal reaches all towers, attribution 

is highly dependent on tower placement. If the goal is to link changes to relevant processes, a far denser network would be 

required. To properly guide such tower placement, future studies should aim to include site-specific transport modelling into 

the analysis and network optimization.  425 

4.3 Outlook 

Of note is that in this analysis we do not leverage the combined strengths of these systems. The precise measurements of the 

tall towers can distinguish between small changes, while the two satellites have excellent spatial coverage and resolution. 

While TROPOMI performs better than MERLIN in summertime (while disregarding systematic errors, as in this study), 

MERLIN is able to take samples in partially cloudy and dark conditions, though often at a lower precision. Retrievals from 430 

cloud tops, including cloud-slicing approaches (Ramanathan et al., 2015), may also be possible, though are not considered 

here. Since these systems therefore partly compensate for each other's weaknesses, a multi-stream data assimilation system 

can produce results better than the sum of its parts (Houweling et al., 2017). An essential component of such a system would 

be an extensive CH4 flux network, which has been shown to be lacking in the high Northern latitudes (Pallandt et al., 2021; 

Peltola et al., 2019). Future studies may explore the potential of a coordinated, diverse observing portfolio to monitor such 435 

sudden emissions and changes to the northern high-latitude carbon cycle.  
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5 Concluding remarks 

In this study we presented results from an OSSE system based on GEOS-5 nature runs, to perform signal detection experiments 

and demonstrate the value of top-down GHG monitoring systems across the northern high latitudes. Using this system, we are 

able to simulate and compare detection limits of tall towers, passive and active satellites. This signal detection experiment is a 440 

first step in a larger effort to quantify the capability of high-latitude top down networks for monitoring changes, and to a 

degree, warning society of sudden and profound changes in the carbon cycle as a result of climate change. 

Using our OSSE framework, we specifically targeted a scenario in which Yedoma thaw causes increased CH4 release from 

soils to the atmosphere. We find that the tall tower network is capable of detecting the smallest flux increases tested (at a factor 

1.07). Though, when relating changes to local processes the tall tower network struggles, as the lower detection limits rise to 445 

a flux enhancement factor of ~32.9 for the entire network. Minimum detection limits for the tested satellites are higher than 

for the best of the tall tower network, with a required flux increase approximately one and a half times larger for TROPOMI 

and threefold in MERLIN’s case. MERLIN’s ability to consistently take measurements during the Arctic winter is somewhat 

offset by the increased error as a result of snow and ice’s low reflectance in the shortwave infrared. The transport modelling 

error scenarios of the MERLIN run show a relatively small increase in lower detection limits. We find these three systems will 450 

only be able to detect changes on the scale of Yedoma thaw in the higher emission scenarios, and typically only after emissions 

have risen significantly over time. Longer time series can alleviate this issue to some degree at the cost of reduced temporal 

resolution. Furthermore, we propose an expansion of the tall tower network, and advise on an increased focus on the 

development of multi-stream data assimilation systems, since optimally leveraging the strengths of each of these observing 

systems shows great promise.  455 
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